
Week 7 - Monday



 What did we talk about last time?
 Pointers to pointers
 Returning pointers









Don't worry if it doesn't work right. If everything did, you'd 
be out of a job.

Mosher's Law of Software Engineering





 So far, we have only talked about using getchar() (and 
command line arguments) for input

 As some of you have discovered, there is a function that 
parallels printf() called scanf()

 scanf() can read strings, int values, double values, 
characters, and anything else you can specify with a %
formatting string

int number;
scanf("%d", &number);



 In the first place, you have to use pointers (or at least the 
reference operator &)

 I wanted you to understand character by character input (with 
getchar()) because sometimes that's the best way to solve 
problems
 Indeed, scanf() is built on character by character input

 Crazy things can happen if scanf() is used carelessly



 These are mostly what you would expect, from your experience 
with printf()

Specifier Type

%d int

%u unsigned int

%o %x unsigned int (in octal  for o or hex for x)

%hd short

%c char

%s null-terminated string

%f float

%lf double

%Lf long double



#include <stdio.h>

int main ()
{

char name[80];
int age;
int number;

printf("Enter your name: ");
scanf("%s",name);  
printf("Enter your age: ");
scanf("%d",&age);
printf("%s, you are %d years old.\n", name, age);
printf("Enter a hexadecimal number: ");
scanf("%x",&number);
printf("You have entered 0x%08X (%d)\n", number, number);

return 0;
}



 scanf() returns the number of items successfully read
 Typically, scanf() is used to read in a single variable, 

making this value either 0 or 1
 But it can also be used to read in multiple values
int value1, value2, value3;
int count = 0;

do {
printf("Enter three integers: ");
count = scanf("%d%d%d",&value1, &value2, &value3);

} while( count != 3 );



 Write a program that asks a user how many strings they want 
to enter
 Read this number with scanf()

 Then, read in each string with scanf()
 Print out the string that comes earliest in the dictionary
 Hint: We don't need to store all the strings, only the current 

one and the earliest one we've found
 We can assume that the strings will be no longer than 100 

characters (not including the null character)





 Memory can be allocated dynamically using a function called 
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes 
you want

 It returns a pointer to that memory, which you cast to the 
appropriate type

int* data = (int*)malloc(sizeof(int));



 Any single variable can be allocated this way

 But why would someone do that when they could declare the 
variable locally?

int* number = (int*)malloc (sizeof(int));
double* value = (double*)malloc (sizeof(double));
char* c = (char*)malloc (sizeof(char));
*number = 14;
*value = 3.14;
*c = '?';



 It's much more common to allocate an array of values 
dynamically

 The syntax is exactly the same, but you multiply the size of 
the type by the number of elements you want

int i = 0;
int* array = (int*)malloc (sizeof(int)*100);
for (i = 0; i < 100; i++) // Initialize for fun
array[i] = i + 1;



 Dynamically allocated memory sits on the heap
 So you can write a function that allocates memory and 

returns a pointer to it

int* makeIntArray(int size)
{
int* array = (int*)malloc (sizeof(int)*size);
return array;

}



 strdup() is a function that
 Takes a string (a char*)
 Allocates a new array to hold the characters in it
 Copies them over
 Returns the duplicated string

 Let's write our own with the following prototype

char* new_strdup(char* source);



 C is not garbage collected like Java
 If you allocate something on the stack, it disappears when the 

function returns
 If you allocate something on the heap, you have to deallocate

it with free()
 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char* things = (char*)malloc (100);
free(things);
things = NULL;



 Who is supposed to call free()?
 You should feel fear in your gut every time you type 
malloc()
 That fear should only dissipate when you write a matching free()

 You need to be aware of functions like strdup() that call 
malloc() internally
 Their return values will need to be freed eventually

 Read documentation closely 
 And create good documentation for any functions you write that 

allocate memory



 If you try to free something that has already been freed, your 
program will probably crash

 If you use data that's already been freed, your program might
crash

 If you try to free a NULL pointer, it's fine

 Life is hard.





 Practice with dynamic allocation
 Dynamically allocating multi-dimensional arrays



 Keep reading K&R chapter 5
 Work on Project 3
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