
Week 7 - Monday

 What did we talk about last time?
 Pointers to pointers
 Returning pointers

Don't worry if it doesn't work right. If everything did, you'd
be out of a job.

Mosher's Law of Software Engineering

 So far, we have only talked about using getchar() (and
command line arguments) for input

 As some of you have discovered, there is a function that
parallels printf() called scanf()

 scanf() can read strings, int values, double values,
characters, and anything else you can specify with a %
formatting string

int number;
scanf("%d", &number);

 In the first place, you have to use pointers (or at least the
reference operator &)

 I wanted you to understand character by character input (with
getchar()) because sometimes that's the best way to solve
problems
 Indeed, scanf() is built on character by character input

 Crazy things can happen if scanf() is used carelessly

 These are mostly what you would expect, from your experience
with printf()

Specifier Type

%d int

%u unsigned int

%o %x unsigned int (in octal for o or hex for x)

%hd short

%c char

%s null-terminated string

%f float

%lf double

%Lf long double

#include <stdio.h>

int main ()
{

char name[80];
int age;
int number;

printf("Enter your name: ");
scanf("%s",name);
printf("Enter your age: ");
scanf("%d",&age);
printf("%s, you are %d years old.\n", name, age);
printf("Enter a hexadecimal number: ");
scanf("%x",&number);
printf("You have entered 0x%08X (%d)\n", number, number);

return 0;
}

 scanf() returns the number of items successfully read
 Typically, scanf() is used to read in a single variable,

making this value either 0 or 1
 But it can also be used to read in multiple values
int value1, value2, value3;
int count = 0;

do {
printf("Enter three integers: ");
count = scanf("%d%d%d",&value1, &value2, &value3);

} while(count != 3);

 Write a program that asks a user how many strings they want
to enter
 Read this number with scanf()

 Then, read in each string with scanf()
 Print out the string that comes earliest in the dictionary
 Hint: We don't need to store all the strings, only the current

one and the earliest one we've found
 We can assume that the strings will be no longer than 100

characters (not including the null character)

 Memory can be allocated dynamically using a function called
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes
you want

 It returns a pointer to that memory, which you cast to the
appropriate type

int* data = (int*)malloc(sizeof(int));

 Any single variable can be allocated this way

 But why would someone do that when they could declare the
variable locally?

int* number = (int*)malloc (sizeof(int));
double* value = (double*)malloc (sizeof(double));
char* c = (char*)malloc (sizeof(char));
*number = 14;
*value = 3.14;
*c = '?';

 It's much more common to allocate an array of values
dynamically

 The syntax is exactly the same, but you multiply the size of
the type by the number of elements you want

int i = 0;
int* array = (int*)malloc (sizeof(int)*100);
for (i = 0; i < 100; i++) // Initialize for fun
array[i] = i + 1;

 Dynamically allocated memory sits on the heap
 So you can write a function that allocates memory and

returns a pointer to it

int* makeIntArray(int size)
{
int* array = (int*)malloc (sizeof(int)*size);
return array;

}

 strdup() is a function that
 Takes a string (a char*)
 Allocates a new array to hold the characters in it
 Copies them over
 Returns the duplicated string

 Let's write our own with the following prototype

char* new_strdup(char* source);

 C is not garbage collected like Java
 If you allocate something on the stack, it disappears when the

function returns
 If you allocate something on the heap, you have to deallocate

it with free()
 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char* things = (char*)malloc (100);
free(things);
things = NULL;

 Who is supposed to call free()?
 You should feel fear in your gut every time you type
malloc()
 That fear should only dissipate when you write a matching free()

 You need to be aware of functions like strdup() that call
malloc() internally
 Their return values will need to be freed eventually

 Read documentation closely
 And create good documentation for any functions you write that

allocate memory

 If you try to free something that has already been freed, your
program will probably crash

 If you use data that's already been freed, your program might
crash

 If you try to free a NULL pointer, it's fine

 Life is hard.

 Practice with dynamic allocation
 Dynamically allocating multi-dimensional arrays

 Keep reading K&R chapter 5
 Work on Project 3

	COMP 2400
	Last time
	Questions?
	Project 3
	Project 4
	Quotes
	Input with scanf()
	scanf()
	Why didn't I teach you scanf() before?
	Format specifiers
	scanf() examples
	Return value for scanf()
	scanf() practice
	Dynamic Memory Allocation
	malloc()
	Allocating single values
	Allocating arrays
	Returning allocated memory
	strdup() example
	free()
	Who is responsible?
	Double freeing
	Upcoming
	Next time…
	Reminders

